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Power 
System 

Operator 
Monitor & assess system 
condition 
…if needed, take action. 

Minimize energy costs 
…subject to security  
constraints. 

Voltage 
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Voltage 
magnitudes 

Power 
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flows 



•  Some variables cannot be measured. 
•  Limited number of measurements. 
•  Corrupted with noise + bad data. 

Estimate all state variables using incomplete, 
inaccurate measurements. 

Voltage 
phase angles 

Voltage 
magnitudes 

Power 
injections 

Power 
flows 

Challenges: 

Power System State Estimation 

(SE is the system operator’s eyes and ears) 



•  Predictions cannot be measured. 
•  Limited amount of data. 
•  Data corrupted with noise + bad data. 

Make predictions using incomplete, inaccurate 
data. 

Predictions Data Data Data 

Challenges: 

Statistical Learning 

(State estimation is just a special case) 



The August 14th, 2003 Northeast Blackout 

•  MISO’s state estimator was inactive for most of the period 
between 12:15 and 15:34 EDT.  

•  Could not identify the system as being on the verge of collapse. 

[US-Canada Power System Outage Task Force 2004, p. 48]   



Image Source: MIT Energy Initialtive, “Future of the Electric Grid Study”, 2011 

SE turned off 



Integration of Variable Generation 

[NERC IVGTF 2004 Task 2.4, 2011]   

•  Three key areas of operation support. 
•  All rely crucially on good state estimation. 



•  Focus on State Estimation + classical SCADA measurements. 
–  Voltage magnitude, power flows and injection. 
–  Classical quadratic formulation due to Schweppe.  
–  Core issue: Quadratic nonconvexity -> Strongly NP-hard. 

•  PMUs / Synchrophasors? 
–  Quadratic nonconvexity remain (unless all buses have perfect PMUs). 
–  Validating consistency (against noisy / bad data) -> Strongly NP-hard.  
–  Avoid to keep discussion simple.  

•  Other measurements (e.g. dq-axis current)? 
–  Can be reformulated as quadratic by adding new variables.  
–  Quadratic nonconvexity remain -> Strongly NP-hard. 
–  Again, avoid to keep discussion simple. 

Scope 



In this talk… 
•  Review: WLS Estimation 
•  Local convergence and 

spurious estimates 
•  Approaches to avoid local 

convergence 



In this talk… 
•  Review: WLS Estimation 
•  Local convergence and 

spurious estimates 
•  Approaches to avoid local 

convergence 



Formulation 
State Variables 

(Unknown) 

Voltage phasors 

Magnitude-squared is quadratic: Power is voltage times current, and 
current is linear wrt voltage, 

Quadratic Model (Known) 

Why quadratic model? 

Measurements 
(Known) 

Voltage magnitude,  
Power measurements 

Known Unknown 

Write each measurement 
Model mismatch & 
measurement error 

Find estimator that best explains the measurements. 



Weighted Least Squares 

Minimize the residual 
sum-of-squares 

Remark. Must rescale weights w1 , …, wm to reflect “trustworthiness” of 
the data. 

Proposition.   is is the maximum likelihood estimator if each 

is independently & normally distributed with zero mean and variance 1/wi. 

Bad Data Detection 
If the i-th residual is large, 
then mark it as bad. 

b5 

r5 

•  Some data may be bad (variances may be large). 
•  Bad data are not marked. 

(Other formulations 
are also possible) 

[Schweppe 1970] 



Given initial guess x0, do k = 0,1,2,… 
Nonlinear Least Squares. Schweppe recommended Gauss-Newton.  

Solving the Optimization 

Other local search methods:  
•  (Regular) Newton’s method,  
•  Gradient descent,  
•  Stochastic gradient descent. 

Linearize Fi(x) about x = xk 

Global search methods 
•  Branch & Bound 
•  Simulated annealing 
•  Genetic Algorithms 

Gauss-Newton is a local search method. 

Exponential worst-case time. Only achieve local optimality. 

Adopting a step-size rule guarantees convergence. 



In this talk… 
•  Review: WLS Estimation 
•  Local convergence and 

spurious estimates 
•  Approaches to avoid local 

convergence 



Local Convergence 

•  When Fi(.) is nonlinear, the objective is generally nonconvex. 
•  Local search can only converge to critical points.  
•  Finding the global minimum is NP-hard.  
•  Only the global minimum gives max likelihood estimation. 

Critical points 

Local minima Global minimum 
(Even finding a local minimum is NP-hard!) 

(May only be a 
saddle point) 



“In the case of statistical and machine 
learning problems, solving a parameter 
estimation problem to very high accuracy 
often yields little to no improvement in 
actual prediction performance, the real 
metric of interest in applications.” 

– Boyd et al. 

But in power systems state estimation, 
inaccuracy can be very dangerous. 



Example: Two-Bus System 

G Y1,2 = 1 / (0.01 + 0.1j) p.u. 

P = 2 p.u.  
Q = 1 p.u. 

Four noise-free measurements: 
Bus 1 volt. magn. 

b2 = F2(z) 
b3 = F3(z) 

b1 = F1(z) 
b4 = F4(z) 

Bus 2 P injection 

Bus 2 Q injection 

Bus 1 P injection 

Unknown system state z1,z2  
Model functions F1(.),…,F4(.) 
Noise-free measurements b1,…,b4 

Find: 
Given: 

System state: 

[R.Y. Zhang, Lavaei, Baldick 2017] 



Unknown system state z1,z2  
Model functions F1(.),…,F4(.) 
Noise-free measurements b1,…,b4 

Find: 
Given: 

Consider nonlinear least-squares 

The global minimizer is (x1,x2) = (z1,z2), with zero objective. 

Let’s fix x1 = z1, and 
plot over |x2| and angle x2. 

Correct 
Estimate 

Spurious 
Estimate 

Problem has 3 dofs: 
 |x1|, |x2|, and angle x2. 

Let’s plot the 
objective function 



Indeed, we find four critical points, only one of which is the correct estimate 

Global 
minim. 

Local 
minim. 

Local 
maxim. 

Saddle 
point 

Both 
estimates are 
plausible! 



Indeed, we find four critical points, only one of which is the correct estimate 

Correct 
Estimate 

Spurious 
Estimate 

How well do the two estimates match our measurements? 

Perfect match. 

Global 
minim. 

Local 
minim. 

Local 
maxim. 

Saddle 
point 

Measurement error?  
Bad data? 



Local convergence gives spurious estimates 

•  Affects even the simplest problems with perfect data. 
•  Gives plausible but incorrect estimates. 
•  Misleads re: measurement error / bad data. 

Critical points do not imply: 
•  Nonunique solutions 
•  Unobservable states 
•  Inherent “hardness” of the 

problem 

Unique closed-form solution: 

Can only expect to find critical points of weighted least 
squares problem 

[R.Y. Zhang, Lavaei, Baldick 2017] 
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•  Review: WLS Estimation 
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•  Approaches to avoid local 
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Consider finding the furthermost point of a nonconvex set.  
•  Enclose the nonconvex set within a convex set. Then any local minimum is the 

global minimum (by definition). 
•  (Success) If that point also lies within the original nonconvex set, then it is a 

global minimum for the original problem. 
•  (Failure) If that point does not lie within the original set, then it may be useless. 

Convex Relaxations 



The Penalized SDP Method [Madani, Lavaei & Baldick 2016] 
[Yu Zhang, Madani, Lavaei 2017] 

(WLS) 

(Relax) 

1.  Pick special choice of matrix C and solve (Relax) 
2.  If rank(X) = 1, compute xx* = X and output x. 

Theorem (Candes & Recht, Candes & Tao). If Ai are 
“random”, bi are “noise-free”, and m is “sufficiently large”, 
then penalized SDP outputs the global optimum of (WLS) 
with overwhelming probability. 

•  Power systems are not “random”; data are seldom “noise-free”. 
•  Nevertheless, often close to global optimum. 
•  Requires solving an SDP to high accuracy. Complexity may be 

reduced by exploiting structure. [Andersen, Dahl, Vandenberghe 2014] 
[Madani, Kalbat, Lavaei 2015] [Zheng et al. 2016] [R.Y. Zhang & Lavaei 2017] 



The Penalized SDP Method [Madani, Lavaei & Baldick 2016] 
[Yu Zhang, Madani, Lavaei 2017] 

(WLS) 

(Relax) 

Gauss-Newton 
on (WLS) with  
cold start 

Objective 
in (WLS) 

Penalized SDP 

100 Random instances of IEEE 118-bus system [ZML2017] 

1.  Pick special choice of matrix C and solve (Relax) 
2.  If rank(X) = 1, compute xx* = X and output x. 



Adding Redundant Measurements 

Consider solving WLS with m perfect measurements 
[R.Y. Zhang, Lavaei, Baldick 2017] 

using Gauss-Newton with random initial point x0.  

•  Begin with power 
flow constraints 

•  Randomly add new, 
perfect 
measurements 
without replacement 

num. meas 
num. dof 

Success  
rate over 100 
trials for IEEE 39-
bus problem 

What is the effect of increasing m? 

WLS 
becomes 
convex…? 

warm-start cold-start 



Adding Redundant Measurements 

Consider solving WLS with m perfect measurements 

using Gauss-Newton with random initial point x0. 

Theorem (Ge, Lee, Ma 2016). If Ai are “random element-
wise”, m is “sufficiently large”, then after adding a small 
regularization term, every local minimum is a global 
minimum to the original problem with overwhelming 
probability. 

•  Again, power systems are not “random”, data are not “noise-free”. 
•  Should be strongly affected by model / measurement error. 
•  But much lower time / memory complexity than PSDP. 



In Summary… 

•  State estimation is formulated as nonconvex optimization. 
•  Classic statistical framework of parameter estimation. 
•  But local convergence is a significant issue for power 

systems. 
–  Affects all networks, wven with perfect data. 
–  Gives plausible but incorrect estimations. 
–  Misleads re: measurement error and bad dad. 

•  Global optimization: Penalized SDP and Redundant 
Measurements 
–  Strong guarantees for random problems. 
–  Good empirical performance for the practical problem: near-

global-optimal. 
–  Future work is to fully understand “why”. 

Thank you for your attention 



Semidefinite Relaxations 
Begin with Schweppe’s weighted least squares problem: 

to make quadratic models linear Define quadratic variable 

where 

Then, 

Convex Nonconvex 

Classic convex relaxation 

“X is a rank-1 
semidefinite matrix” 

“X is a 
semidefinite 
matrix” Encourage low-rank solutions 


